Нашли опечатку?

Выделите фрагмент и отправьте нажатием Ctrl+Enter.

© 2026, robots.2ua.org

Все права защищены

Обучение с нуля помогает Intrinsic создавать будущее для робототехники

06.05.2024 | Фекла Дербинова

Робототехники изучают новые способы научить роботов захватывать предметы и работать в координации с другими роботами на гораздо более высоких скоростях - навыки, необходимые на современных заводах, которые используют автоматизацию для сборки автомобилей и компьютеров, а также других продуктов.

На выставке Automate 2024 в Чикаго на этой неделе компания Intrinsic, специализирующаяся на робототехнике с искусственным интеллектом, демонстрирует свою работу с Nvidia и Google DeepMind Robotics. Используя базовые модели Nvidia Isaac Manipulator для навыков хватания, Intrinsic работала со своим клиентом Trumpf Machine Tools. Навык захвата был обучен на 100% синтетических данных, сгенерированных Isaac Sim. Isaac Manipulator был представлен в марте на Nvidia GTC2024.

«Вместо того чтобы жестко кодировать конкретные захваты для захвата определенных объектов определенным образом, эффективный код для конкретного захвата и объекта автоматически генерируется для решения задачи с использованием базовой модели и синтетических обучающих данных», - пояснила Венди Тан Уайт, генеральный директор Intrinsic, в своем блоге.

Использование базовых моделей ИИ означает, что компании могут программировать множество конфигураций роботов, которые затем смогут обобщать и взаимодействовать с различными объектами в реальном мире. «В будущем разработчики смогут использовать готовые универсальные навыки захвата, подобные этим, чтобы значительно ускорить программирование роботов, - добавил Уайт. Такая возможность может оказать огромное влияние, в том числе снизить стоимость разработки».

Совместно с Google DeepMind компания Intrinsic разработала универсальный автоматический планировщик движения роботов на основе ИИ, чтобы один или несколько роботов могли работать вместе, разделяя одно и то же рабочее пространство. Intrinsic использует модель, обученную на синтетических данных из физического движка, где в качестве исходных данных используются модели геометрии, кинематики робота, динамики робота и описания его задач. Модель обучается в облаке, и на выходе получается модель, которая представляет «практически оптимальные пути и траектории движения робота, обычно превосходящие решения человеческих экспертов», - говорит Уайт.

Компания выпустила видеоролик

Результат - 100% ML-генерация для оркестровки четырех роботов, работающих над уменьшенной симуляцией сварки автомобиля. По словам Уайта, планы движений для каждого робота генерируются автоматически и работают примерно на 25 % лучше, чем традиционные методы.

«Робототехника - это ИИ в физическом мире, и мы с нетерпением ждем, что будет дальше», - добавил Уайт.

К суперкомпьютеру Nvidia в Японии присоединится квантовый компьютер

Суперкомпьютер, который планируется построить в Японии на базе Nvidia, получит в соседи квантовый компьютер, но это не ремейк фильма «Странная парочка». | Суперкомпьютер Nvidia ABCI-Q, создаваемый для передового исследовательского агентства в Японии, теперь будет иметь рядом с собой квантовый компьютер.

Altera снова на подъеме, поскольку подразделение Intel нацелилось на перспективы развития ПЛИС стоимостью более $55 млрд.

У Intel появилось новое имя для ее дочерней компании по производству ПЛИС, и оно знакомо. | В 2015 году Intel приобрела компанию Altera, чтобы продвигать ПЛИС, и теперь этот бренд снова возвращается.

SensiML открывает исходный код Analytics Studio для TinyML-кода для приложений для IoT-датчиков

Компания SensiML (рифмуется с «sensible»), дочерняя компания QuickLogic, недавно выступила с амбициозной инициативой: предложить дизайнерам полный открытый доступ к своим автоматизированным системам машинного обучения | Компания планирует показать на выставке Sensors Converge концепт умной дрели, которая использует искусственный интеллект для отключения двигателя вместо механического сцепления.

Биометрия упрощает и улучшает все более распространенные цифровые замки

Безопасное управление доступом в автомобили, дома и офисы все чаще использует более сложные, связанные между собой цифровые замки, чтобы контролировать, кто входит и выходит. | По крайней мере, в автомобилях наблюдается стремление обеспечить совместимость цифровых замков, выходя за рамки проприетарных подходов.

Nvidia, Oracle, QMware готовят гибридные квантово-классические вычисления

В последние годы Oracle Corp. резко увеличила свои инвестиции в графические процессоры Nvidia, укрепляя свою облачную инфраструктуру Oracle для удовлетворения растущего спроса на корпоративный искусственный интеллект. | Давние партнеры Nvidia и Oracle сотрудничают с компанией QMware, занимающейся квантовыми вычислениями, для поддержки гибридных квантово-классических вычислений.