Нашли опечатку?

Выделите фрагмент и отправьте нажатием Ctrl+Enter.

© 2025, robots.2ua.org

Все права защищены

Обучение с нуля помогает Intrinsic создавать будущее для робототехники

06.05.2024 | Фекла Дербинова

Робототехники изучают новые способы научить роботов захватывать предметы и работать в координации с другими роботами на гораздо более высоких скоростях - навыки, необходимые на современных заводах, которые используют автоматизацию для сборки автомобилей и компьютеров, а также других продуктов.

На выставке Automate 2024 в Чикаго на этой неделе компания Intrinsic, специализирующаяся на робототехнике с искусственным интеллектом, демонстрирует свою работу с Nvidia и Google DeepMind Robotics. Используя базовые модели Nvidia Isaac Manipulator для навыков хватания, Intrinsic работала со своим клиентом Trumpf Machine Tools. Навык захвата был обучен на 100% синтетических данных, сгенерированных Isaac Sim. Isaac Manipulator был представлен в марте на Nvidia GTC2024.

«Вместо того чтобы жестко кодировать конкретные захваты для захвата определенных объектов определенным образом, эффективный код для конкретного захвата и объекта автоматически генерируется для решения задачи с использованием базовой модели и синтетических обучающих данных», - пояснила Венди Тан Уайт, генеральный директор Intrinsic, в своем блоге.

Использование базовых моделей ИИ означает, что компании могут программировать множество конфигураций роботов, которые затем смогут обобщать и взаимодействовать с различными объектами в реальном мире. «В будущем разработчики смогут использовать готовые универсальные навыки захвата, подобные этим, чтобы значительно ускорить программирование роботов, - добавил Уайт. Такая возможность может оказать огромное влияние, в том числе снизить стоимость разработки».

Совместно с Google DeepMind компания Intrinsic разработала универсальный автоматический планировщик движения роботов на основе ИИ, чтобы один или несколько роботов могли работать вместе, разделяя одно и то же рабочее пространство. Intrinsic использует модель, обученную на синтетических данных из физического движка, где в качестве исходных данных используются модели геометрии, кинематики робота, динамики робота и описания его задач. Модель обучается в облаке, и на выходе получается модель, которая представляет «практически оптимальные пути и траектории движения робота, обычно превосходящие решения человеческих экспертов», - говорит Уайт.

Компания выпустила видеоролик

Результат - 100% ML-генерация для оркестровки четырех роботов, работающих над уменьшенной симуляцией сварки автомобиля. По словам Уайта, планы движений для каждого робота генерируются автоматически и работают примерно на 25 % лучше, чем традиционные методы.

«Робототехника - это ИИ в физическом мире, и мы с нетерпением ждем, что будет дальше», - добавил Уайт.

ИИ-полоса Nvidia снова расширилась благодаря очередному рекорду выручки

В первом квартале 2025 финансового года компания Nvidia снова превзошла ожидания по квартальной выручке, установив квартальный рекорд по общему доходу и доходу от дата-центров в десятый раз, и ли | Компания получила $26 млрд дохода в первом квартале 2025 финансового года, возглавив очередной рекордный квартал по доходу от дата-центров.

Stream Analyze выводит программное обеспечение для искусственного интеллекта на рынок IoT в США

Как далеко может зайти краевой ИИ? | Компания Stream Analyze стремится расширить возможности устройств на границе IoT с помощью аналитики на основе искусственного интеллекта, которая может помочь в предиктивном обслуживании и других приложениях.

Zapata AI, Andretti участвуют в более глубоком сотрудничестве в области генеративного ИИ

Компания Zapata AI, занимающаяся разработкой программного обеспечения для генеративного искусственного интеллекта, и автоспортивная организация Andretti INDYCAR заявили, что они будут работать вместе уже третий гоночный сезон подряд, продолжая изучать, как Zapa | Motorsports организация Andretti работает с технологией генеративного искусственного интеллекта Zapata AI «для создания улучшенного технологического стека для конкретных случаев использования, включая стратегию гонки и генерацию сигналов данных».

Генеральный директор OpenAI Альтман снова ссылается на необходимость надзора за ИИ

В среду генеральный директор OpenAI Сэм Альтман заявил аудитории Intel, что строительство центров обработки данных для поддержки взрывного роста, ожидаемого с помощью искусственного интеллекта, будет стоить дорого, но он отрицает, что это произойдет | В беседе у костра с генеральным директором Intel Гелсингером Альтман рассказал о своем оптимизме в отношении искусственного интеллекта, признавая при этом опасность.

Intel увеличила выручку в первом квартале, но прогноз на второй квартал не впечатляет

Отчет Intel о доходах за первый квартал дал наблюдателям много поводов для размышлений, поскольку он стал первым с тех пор, как компания отделила свой литейный бизнес от операций по разработке чипов (подразделение, включающее в себя | Продажи Intel в первом квартале были обеспечены ростом в группе клиентских вычислений и подразделении ИИ для центров обработки данных, в то время как в других подразделениях наблюдалось снижение доходов.

Red Hat интегрирует NIMs Nvidia в OpenShift AI

Red Hat углубляет свое партнерство с Nvidia в области ИИ, объявив на этой неделе на Red Hat Summit 2024 в Денвере, что работает над интеграцией микросервисов NIM AI inference от Nvidia в Red Hat | Углубление партнерства между Red Hat и Nvidia поможет организациям справиться с растущим разнообразием моделей ИИ.